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Pulse-echo overlap measurements of ultrasonic wave velocity have been used to determine
the elastic stiffness moduli and related elastic properties of ceramic samples of
dimolybdenum carbide (α-Mo2C) as functions of temperature in the range 130–295 K and
hydrostatic pressure up to 0.2 GPa at room temperature. The temperature dependences of
the shear elastic stiffness (µ) and Young’s modulus (E) show normal behaviour and can be
approximated by a conventional model for vibrational anharmonicity. The longitudinal
elastic stiffness (CL) increases with decreasing temperature and shows a knee at about
200 K; the decrease in slope below the knee indicates longitudinal acoustic-mode softening.
The adiabatic bulk modulus (BS) is also affected by the mode softening below 200 K. The
values obtained for the acoustic Debye temperature (�D) for ceramic α-Mo2C agree well
with the thermal Debye temperature determined previously from heat capacity
measurements. The velocities of both the longitudinal and shear ultrasonic waves in
ceramic α-Mo2C increase approximately linearly with pressure: both the long-wavelength
longitudinal and shear acoustic modes stiffen under pressure. The values determined at
room temperature for the hydrostatic-pressure derivative (∂µ/∂P)P=0 of the shear stiffness
is similar to those found for ceramic TiC and TaC; while (∂CL/∂P)P=0 and (∂BS/∂P)P=0 have
large values, possibly due to the defect microstructure of ceramic α-Mo2C.
C© 2004 Kluwer Academic Publishers

1. Introduction
Transition metal carbides are compounds of great tech-
nological and scientific interest. They combine proper-
ties of metals and covalent compounds, such as great
hardness, good chemical and mechanical stability and
resistance to corrosion, a high melting point, high elec-
trical and thermal conductivity and brittle-to-ductile
transitions at high temperatures [1–3]. Dimolybdenum
carbide (Mo2C) belongs to the group VI transition metal
carbides. Previous studies have shown that it has metal-
lic electrical properties with a superconducting transi-
tion temperature of 9.7 K [4]. Mo2C has potential uses
in diffusion barriers and electrical connections in mi-
croelectronics [5, 6]. At temperatures above 1960◦C,
Mo2C adopts a disordered, hexagonal L′3-type struc-
ture (space group P63/mmc, Z = 1), in which the
molybdenum atoms form a hexagonal close packed ar-
ray and the carbon atoms occupy one half of the octa-
hedral interstitial sites in a random way [7–10]. Transi-
tions are observed to ordered structures upon cooling.
An ε-Fe2N-type structure (space group P 3̄m1, Z = 2)

is present between 1960 and 1350◦C, and below this
temperature the structure changes to the ζ -Fe2N type
(space group Pbcn, Z = 4) and is designated the α-
phase of Mo2C [7]. The α-phase is the only stable struc-
ture under ambient conditions with the carbon atoms
occupying one half of the interstitial sites in an ordered
way [7–10]. This phase is obtained by ordering the car-
bon atoms in the cell corresponding to the orthorhom-
bic (o) setting of L′3-type Mo2C (hex) with ao = chex,
bo = 2ahex, co = √

3ahex [7–9]. The structure of this
form has been refined by neutron diffraction [8, 9].

A recent theoretical study [10] has predicted that
α-Mo2C has a high bulk modulus, but is less hard in
comparison to cubic transition-metal carbides (e.g., TiC
and TaC). However, despite the technological impor-
tance of α-Mo2C, understanding of the elastic proper-
ties of its ceramic form is sparse. Previously, Young’s
modulus of ceramic Mo2C has been investigated at
room temperature [1–3, 5, 11–15] and in a temperature
range from 103 to 1373 K [15]. Recently, Kral et al. [16]
compiled the available data for the room temperature
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Young’s modulus of Mo2C, but the data was scattered
over a wide range from 228 to 534 GPa. While study-
ing the bonding characteristics of molybdenum carbide,
Toth et al. [17] observed that there was a marked dis-
agreement (of around 300 K) between the Debye tem-
perature obtained from sound velocity measurements
on single-crystal Mo2C [18, 19] and that derived from
low temperature heat capacity data [20]. Chang et al.
[21] argued that the sound velocity data for Mo2C re-
ported in the literature [18, 19] may be in error, and
noted that independent sound velocity measurements
are required (see also [1]).

The present ultrasonic study of the elastic and non-
linear acoustic properties of ceramic α-Mo2C has been
largely motivated by the need for accurate measure-
ments of the effects of temperature and hydrostatic
pressure on the velocities of longitudinal and shear ul-
trasonic waves in this material. These measurements
are essential for design purposes in technological ap-
plications and scientific investigations of the dynamic
response of the material to applied pressure. Ultra-
sonic wave velocity measurements on ceramic α-Mo2C
have been extended from room temperature down to
130 K. To assess the nonlinear acoustic properties
of this ceramic, ultrasonic wave velocities have been
measured as a function of hydrostatic pressure up to
0.2 GPa at room temperature. The outcome of this
experimental work has been the determination of the
technological elastic stiffness moduli and related elas-
tic properties of this ceramic and how they vary with
temperature and hydrostatic pressure. The elastic stiff-
nesses of a material determine the slopes of the acoustic
phonon dispersion curves in the long-wavelength limit;
their hydrostatic-pressure dependences provide infor-
mation on the shift of the acoustic mode energies with
compression.

2. Experimental procedures
The Mo2C ceramic used in this work was supplied by
Testbourne (U.S.A.) and fabricated using a hot-pressing
technique. An X-ray diffraction examination (Fig. 1)
showed that the ceramic consisted of a single-phase (α-
Mo2C) and there was no preferred orientation. The lat-
tice parameters for the hexagonal unit cell, determined
from the X-ray data, were ahex = 2.9997 ± 0.0060 Å

Figure 1 X-ray diffraction pattern for ceramic α-Mo2C. The vertical
dashed lines denote α-Mo2C powder diffraction standard. The lines are
indexed in accordance with the hexagonal subcell described in the intro-
duction.

and chex = 4.724 ± 0.010 Å, which are in good agree-
ment with those reported in the literature [4, 7–10, 22].
The above hexagonal cell parameters correspond to a
subcell of the actual orthorhombic unit cell of this sta-
ble ζ -Fe2N type form of Mo2C [8–10]. An electron
microprobe analysis revealed the presence of 0.94 wt%
oxygen in the α-Mo2C ceramic. Spectroscopic analysis
of the starting powders used in the fabrication of this ce-
ramic revealed the presence of small amounts of impu-
rities: α-Mo2C powders contained, by weight, <0.01%
calcium and <0.03% titanium. The sample density ρ

(=7840 ± 30 kgm−3) was measured by Archimedes’
method using distilled water as a flotation fluid. The
density of the sample is 86% of the theoretical density
(9120 kgm−3) of pure α-Mo2C [2, 14, 18]. SEM anal-
yses showed that the pores are irregularly shaped (with
a maximum size less than about 10 µm) and randomly
distributed in the ceramic.

To further characterise the fundamental properties of
ceramic α-Mo2C, electrical resistivity has been mea-
sured in the temperature range from 300 to 900 K, in
an atmosphere of flowing dry nitrogen. The electrical
resistivity of α-Mo2C has not been extensively studied.
Only one study exists on the measurement of electrical
resistivity as a function of temperature, which was per-
formed in the range 4.2–300 K [4]. The present results
for the temperature dependence of the electrical resis-
tivity of ceramic α-Mo2C (Fig. 2) complement those
reported previously [4]. Two ceramic bars with approx-
imate dimensions 1.5×1.5×10 mm were cut from the
same block as the ultrasonic sample. To measure the
resistance of the bar sample, the standard four-point
probe method was used, and the samples were supplied
with d.c. current between 50 and 70 mA. The main er-
ror (about 4%) in resistance was that incurred in deter-
mining the contact separation. Errors in the resistivity
calculations appearing because of contact placement
and sample dimensions were tested by a Poisson equa-
tion calculation [23], and were found to be negligible.

Figure 2 Temperature dependence of the electrical resistivity for
ceramic α-Mo2C, measured using the four-point probe d.c. technique.
The circles (diamonds) correspond to sample 1 (sample 2). The filled
(open) symbols correspond to measurements made with increasing (de-
creasing) temperature. The dashed lines are second-order polynomial fits
to the experimental data.
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Other errors such as thermal voltages were removed
by taking forward and reverse current measurements.
Averaging the results of room temperature resistivity
measurements on two bar samples of ceramic α-Mo2C
generated a value of 55 ± 2 µ�cm. Although the room
temperature resistivity value should be affected by the
porous microstructure of the samples, good agreement
is found between the resistivity determined here and
that (∼ 57 µ�cm) measured previously [4] on a 97.4%
dense polycrystalline α-Mo2C sample. A higher value
of 71 µ�cm was quoted [2, 3] without giving infor-
mation about the sample characterisation. Lucazeau
et al. [6] determined a value of 80 µ�cm for the room
temperature electrical resistivity of Mo films deposited
on polycrystalline diamond films, and noted that the
higher resistivity may result from the occurrence of
carbon at the grain boundaries. The α-Mo2C ceramic
shows metallic-like electrical behaviour on increasing
temperature (Fig. 2); the average temperature deriva-
tive of electrical resistivity, evaluated at room tem-
perature, is 113 n�cmK−1. This value is smaller than
176 n�cmK−1 determined previously [4] in the temper-
ature range below 300 K. The downward curvature of
the electrical resistivity versus temperature curve sug-
gests that the electrical resistivity of ceramic α-Mo2C
is progressing to saturation at high temperatures. This
electrical behaviour is similar to previously published
results of electrical resistivity measurements on a num-
ber of group IV and V transition-metal carbides, includ-
ing TaC, TiC, V6C5 and ZrC [24–27]. Transition metal
carbides exhibit a tendency toward resistivity saturation
at elevated temperatures. Theoretical models have been
proposed to explain this behaviour [4, 26].

An ultrasonic sample, in the shape of a parallelepiped
with approximate dimensions 10 × 8 × 8 mm, which
was large enough for precision measurements of ul-
trasonic wave velocities, was cut and polished with
three pairs of faces, flat to surface irregularities of about
3 µm and parallel to better than 10−3 rad. To generate
and detect ultrasonic pulses, X- or Y-cut (for longitu-
dinal and shear waves, respectively) 10 MHz quartz
transducers were bonded to the specimen using Nonaq
stopcock grease for low temperature experiments. Dow
resin was used as bonding material for pressure experi-
ments. Ultrasonic pulse transit times were measured us-
ing a pulse-echo overlap system [28], particularly well
suited to the determination of pressure- or temperature-
induced changes in velocity. A correction was applied
to the ultrasonic wave velocity for multiple reflections
at the sample-transducer interface [29]. The tempera-
ture dependence of ultrasound velocity was measured in
the temperature range 130–295 K using a closed-cycle
cryostat. At lower temperatures, thermal expansion dif-
ferences between sample, bond and transducer caused
the ultrasonic signal to be lost; a number of bonding
agents were tried, but none gave satisfactory results.
The dependence of ultrasonic wave velocity upon hy-
drostatic pressure was measured at room temperature
(295 K). Hydrostatic pressure up to 0.2 GPa was applied
in a piston and cylinder apparatus using silicone oil as
the pressure transmitting medium. Pressure was mea-
sured using the change in resistance of a pre-calibrated

manganin wire coil (fixed on the sample holder) inside
the pressure cell. Pressure induced changes in the sam-
ple dimensions were accounted for by using the “natural
velocity (W )” technique [30].

3. Elastic properties at room temperature
The velocities of longitudinal (VL) and shear (VS)
10 MHz ultrasonic waves propagated in ceramic α-
Mo2C at room temperature are given in Table I. This
small grained polycrystalline ceramic can be treated as
an isotropic material, which has two independent elastic
stiffness moduli CL(=ρV 2

L ) and µ(=ρV 2
S ). The elastic

anisotropy was checked by measuring both longitudi-
nal and shear wave velocities in the sample at room
temperature for three orthogonal wave propagation di-
rections: the α-Mo2C ceramic was found to be elasti-
cally isotropic. Discrepancies in the measured sets of
longitudinal and shear ultrasonic velocities amounted
to differences of around 0.5% in the longitudinal and
2% in shear mode velocities. The longitudinal (CL)
and shear (µ) elastic stiffnesses, adiabatic bulk mod-
ulus (BS), Young’s modulus (E), and Poisson’s ratio
(σ ) have been determined, from the ultrasonic velocity
data and sample density, by using the relationships for
an isotropic solid (see for instance [33]). The average
longitudinal and shear mode velocities obtained from
the data measured to assess the elastic isotropy of the
sample have been used in the calculation of these elastic
properties. The acoustic Debye temperature (�D) has
been calculated using the relation [34]

�D = h

k

(
3ρNAn

4πm

)1/3
[

1

3

(
1

V 3
L

+ 2

V 3
S

)]−1/3

, (1)

where h is the Planck’s constant, k is the Boltzmann’s
constant, ρ is the sample density, NA is the Avogadro’s

TABLE I The density, porosity, ultrasonic wave velocities, adiabatic
elastic moduli and their hydrostatic-pressure derivatives for ceramic
α-Mo2C at 295 K. The raw experimental data for the ceramic sam-
ple are given in the first column. Data for the non-porous (void-free)
matrix obtained by applying the correction methods developed in [31]
(Method-1) and [32] (Method-2) are also given for comparison

Non-porous matrix
Ceramic

Description sample Method-1 Method-2

Density ρ (kgm−3) 7840 ± 30 9120 9120
Porosity (%) 14 – –
Longitudinal wave velocity 6257 ± 18 6727 6906

VL (ms−1)
Shear wave velocity 3605 ± 40 3926 3905

VS (ms−1)
Longitudinal stiffness 306 ± 2 412 434

CL (GPa)
Shear stiffness µ (GPa) 101 ± 2 140 139
Bulk modulus BS (GPa) 171 ± 3 225 248
Young’s modulus E (GPa) 253 ± 4 347 351
Poisson’s ratio σ 0.25 ± 0.01 0.243 0.264
Acoustic Debye temperature 490 ± 8 560 559

�D (K)
(∂CL/∂ P)P=0 17.2 ± 0.4
(∂µ/∂ P)P=0 1.09 ± 0.02
(∂ BS/∂ P)P=0 15.7 ± 0.4
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number, n is the number of atoms in the unit formula
and m is the molecular weight. The acoustic phonon
dispersion curves and hence the ultrasonic wave veloc-
ity in transition metal carbides are determined by the
interatomic bonding between metal-metal atoms and
metal-carbon atoms [1]. Therefore, both the molybde-
num atoms and the carbon atoms in the unit cell are
included in the calculation of �D. The results obtained
for CL, µ, BS, E , σ and �D for ceramic α-Mo2C are
summarised in Table I.

The presence of pores in ceramic samples leads to
a reduction in the measured ultrasonic wave velocities
(and hence the elastic stiffness moduli). To enable a
meaningful comparison between the elastic properties
of ceramic α-Mo2C determined in this study and those
available in the literature, it is necessary to correct for
the effects of porosity on the measured moduli. The
correction methods commonly used are those devel-
oped for porous or cracked bodies, such as ceramics
and rocks, or those for a composite with inclusions (for
an overview see [35]). In this study, corrections for the
influence of specimen porosity have been made for the
room temperature data using the correction methods
developed by [31] and [32]. Sayers and Smith [31] ex-
tended a self-consistent treatment to the problem of
porous materials with porosity up to 30%, based on a
multiple-scattering theory developed [36] for propaga-
tion of waves through a random assembly of spheres.
With their method, Sayers and Smith [31] could ob-
tain the longitudinal and shear mode velocities of ultra-
sonic waves propagated in a matrix; only the effects of
the sample porosity were considered. Cankurtaran et al.
[32] developed equations to calculate the bulk and shear
moduli of the matrix with a theoretical treatment of the
wave propagation under pressure in an isotropic solid
in which the distribution of pores is uniform. Both the
porosity (up to ∼30%) and the bulk modulus of the
pore filling fluid are included in this method of cor-
rection. If the specimen is at atmospheric pressure in
air or under vacuum, the porosity is the only factor ef-
fective in this method. These two correction methods
give similar results for the elastic moduli after correc-
tion (Table I). Comparison between the ultrasonic data
as measured on ceramic α-Mo2C and those determined
for the non-porous (void-free) matrix (Table I) shows
that the effect of porosity is to reduce substantially the
ultrasonic wave velocity and hence the elastic moduli
(CL, µ, BS and E) and the acoustic Debye tempera-
ture (�D). While, Poisson’s ratio (σ ) is affected only
slightly.

The adiabatic bulk modulus is increased by this cor-
rection for the effects of porosity (Table I). However,
the bulk modulus estimated for the non-porous matrix
of ceramic α-Mo2C is smaller (by about 19%) than the
value (=307 GPa) obtained [10] from high-pressure
X-ray powder diffraction measurements on α-Mo2C at
room temperature. Ab-initio calculations [10] gener-
ated values for the bulk modulus of Mo2C ranging from
291 to 307 GPa depending on the carbon-ordering pat-
tern. This indicates that, in addition to porosity, other
factors such as impurities and possible microcrack-
ing at the grain boundaries influence the magnitude

TABLE I I Comparison between the Young’s modulus of ceramic
α-Mo2C determined in the present work and the data taken from the
literature. The symbol (–) means that experimental method not given

Young’s modulus
(GPa) Experiment Reference

253 ± 4 Ultrasonic, pulse-echo overlap Present work
350 Porosity correction Present work
216 Sonic method [11]
533 – [12]
223 – [13]
225 – [13]
534 – [13]
228 – [1, 14]
530 Dynamic resonance method [15]
322 – [22]
530 – [2]
230 – [3]
339.1 ± 33.4 Depth sensing indentation [5]

of the bulk modulus of ceramic α-Mo2C used in this
study.

The Young’s modulus of ceramic α-Mo2C has been
the subject of several experimental investigations.
However, the data obtained previously in different ex-
perimental studies are scattered over a wide range
(Table II). In most cases the sample density was not
given and it is not clear whether elastic data are cor-
rected for porosity [16]. The lack of sample character-
isation (i.e. impurity content and porosity) in previous
studies on Young’s modulus of ceramic α-Mo2C makes
it difficult to compare the present data with those avail-
able in the literature. The value determined here for the
Young’s modulus of the non-porous matrix of ceramic
α-Mo2C falls in the range of values (Table II) found
by other researchers using different experimental tech-
niques and is in reasonable agreement with that deter-
mined by Martinelli et al. [5]. In an investigation of
the shear strength of solid state bonded SiC-Mo joints,
prepared by uniaxial hot-pressing without intermediate
materials, Martinelli et al. [5] evaluated the Young’s
modulus of Mo2C present at the interface, which was
formed by diffusion of C into Mo, by depth sensing
indentation. The Young’s modulus (339.1 ± 33.4 GPa)
of this Mo2C was calculated from the slope of the un-
loading segments of the load-depth plots. The unusu-
ally large error in the value of Young’s modulus was
attributed [5] to the surface defects such as scratches
and voids. In the calculation of internal stresses in ce-
ramic Mo2C, Stuart and Ridley [22] adopted a value of
322 GPa for Young’s modulus, which is an average of
the data given in [13].

Vahldiek and coworkers [18, 19] determined the
Young’s modulus (E) values of single-crystal Mo2C
from microhardness indentation measurements. The
experimental method was considered to be accurate to
within 10%. Anisotropy in Young’s modulus was found
and correlated with microhardness anisotropy and the
Mo2C crystal structure. For unannealed Mo2C single
crystals, virtually no elastic modulus anisotropy was
found on the (0001) plane, with the average value be-
ing E = 528 GPa. Along the (21̄1̄0) plane, an aver-
age value of E = 385 GPa was obtained. A value of
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E = 301 GPa was derived for the (101̄2) plane. The
Young’s modulus along the long axis (≈c-axis) of the
Mo2C crystal was also obtained [19] by an ultrasonic
method and determined to be 288 GPa. Along the short
axis of the Mo2C crystal, a value of 566 GPa was deter-
mined using the same ultrasonic method, in fair agree-
ment with that calculated from hardness indentations
on the (0001) plane.

The acoustic Debye temperature (Table I) determined
in the present study for the non-porous matrix of ce-
ramic α-Mo2C is in reasonable agreement with the re-
sults of previous measurements of heat capacity: i.e.,
546, 553 and 608 K for thermal Debye temperature
[1, 21]. However, these values disagree with the aver-
age Debye temperature (=892 K) found [18, 19] for
single-crystal Mo2C, using the mean sound velocities.
Vahldiek and Mersol [19] used an ultrasonic attenuation
comparator at a frequency of 5 MHz to measure some
of the sound velocity values of single-crystal Mo2C
at room temperature. A mean shear velocity V̄S =
8620 ms−1 and a mean longitudinal velocity V̄L = 5680
ms−1 were determined for single-crystal Mo2C, which
gave a mean sound velocity V̄m = 6990 ms−1; V̄L is
much smaller than V̄S. It appears that the accuracy of
previous sound velocity measurements [19] for Mo2C
crystals is questionable, since, in general, the longitudi-
nal wave velocity in solids is larger than the shear wave
velocity (see for instance [33]). Although the mean lon-
gitudinal velocity V̄L determined previously for single-
crystal Mo2C is comparable to the longitudinal veloc-
ity measured here for ceramic α-Mo2C, the mean shear
velocity V̄S for single-crystal Mo2C [19] is extremely
large (by a factor of about 2.4) when compared to the
shear wave velocity for ceramic α-Mo2C (Table I). As
noted by Chang et al. [21] and Toth [1], the discrepancy
could be due to inaccuracies in previous measurements
of sound velocity in single-crystal Mo2C.

The elastic moduli of solids provide a measure of
the interatomic forces. It is well known that the bulk
and Young’s moduli for the transition metal carbides
are much higher than those of the parent transition
metals [1]. The enhanced values of the elastic moduli
for the transition metal carbides over the parent transi-
tion metals were attributed to the presence of carbon in
the lattice, which promotes strong metal-to-carbon and
metal-to-metal bonds. This interpretation is in line with
current theories of atomic bonding in transition metal
carbides [37, 38]. The results of the present ultrasonic
study suggest that α-Mo2C follows the same trend: the
Young’s modulus of its ceramic form is larger than that
(∼=320 GPa) of molybdenum metal [3, 5, 19].

4. Temperature dependence of the elastic
stiffness moduli

The variations of longitudinal (CL) and shear (µ) elas-
tic stiffnesses with temperature for ceramic α-Mo2C
are shown in Fig. 3a and b, respectively. They were ob-
tained from the sample density and the measured veloc-
ities of 10 MHz ultrasonic waves propagated in the sam-
ple as it was cycled between room temperature and the
lowest temperature of measurement. There was no mea-
surable thermal hysteresis in the ultrasonic wave veloc-

ities and no irreversible effects. Corrections on elastic
moduli for sample length and density changes are ex-
pected to be negligible due to the low thermal expansion
of α-Mo2C [2, 5, 14, 22]. Both CL and µ increase with
decreasing temperature. Although the presence of pores
affects the absolute value of elastic moduli, their influ-
ence on the temperature dependence should be much
less [15, 39]. The temperature dependence of the shear
stiffness (Fig. 3b) can be approximated by the conven-
tional model for lattice vibrational anharmonicity [40]:

M(T ) = M0[1 − K F(T/�D)] (2)

with

F(T/�D) = 3

(
T

�D

)4 ∫ �D/T

0

x3dx

ex − 1
. (3)

Here M refers to elastic stiffness modulus, and M0
and K are constants. The Young’s modulus also fits
Equation 2 but with a slight deviation below 200 K
(Fig. 3c). We obtained a value of –140 × 10−6 K−1

for the temperature coefficient of Young’s modulus
of hot-pressed α-Mo2C ceramic, which is somewhat
larger than that (−110 × 10−6 K−1) found [15] for sin-
tered Mo2C ceramic, in the temperature range from
103 to 1373 K. Without presenting experimental data,
Frantsevich et al. [15] noted that ceramic Mo2C had
linear relationship between temperature and Young’s
modulus.

The longitudinal elastic stiffness CL of ceramic α-
Mo2C increases normally with decreasing temperature
and shows the unusual feature of a change in slope at
about 200 K where there is a knee (Fig. 3a). There is
a softening below the knee. The longitudinal modulus
does not obey the conventional model [40] for vibra-
tional anharmonicity. The bulk modulus BS also shows
a knee (Fig. 3d) arising from the longitudinal acoustic-
mode softening. In its ceramic form α-Mo2C is not as
stiff at low temperatures as a theoretical lattice dynam-
ical model developed without including mode soften-
ing would suggest. The corresponding decrease in bulk
modulus indicates a considerable weakening in the in-
teratomic binding forces. The softening of longitudinal
acoustic modes implies incipient lattice instability at
low temperatures [41]. Coherent inelastic neutron scat-
tering study [42] of the lattice dynamics of transition
metal carbides TaC and HfC showed that superconduct-
ing TaC has anomalous dips (softening) in its longitu-
dinal acoustic-mode dispersion curves, whereas non-
superconducting HfC does not exhibit such features.
The longitudinal acoustic phonon softening leads to an
increase in the electron-phonon coupling constant and
hence to a high superconducting transition temperature
(TC) for certain stoichiometric carbides including TaC
and NbC [24, 42]. The Nb metal, which also exhibits
soft modes in its phonon frequency spectrum, has the
highest TC (=9.26 K) of elemental metals [24]. The lon-
gitudinal acoustic-mode softening in ceramic α-Mo2C
below about 200 K (Fig. 3a) could be associated with
the transition at TC(∼=9.7 K) [4] from the normal to
superconducting state.
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(a) (b)

(c) (d)

Figure 3 The change of elastic moduli of ceramic α-Mo2C with temperature (M(T ) − M(290 K)): (a) longitudinal stiffness, (b) shear stiffness, (c)
Young’s modulus and (d) bulk modulus. The filled (open) symbols correspond to measurements made with decreasing (increasing) temperature. The
dotted line refers to the elastic modulus calculated by fitting the lattice vibrational anharmonicity model [40] to the experimental data.

The acoustic Debye temperature determined for ce-
ramic α-Mo2C increases slightly on lowering temper-
ature in accord with stiffening of both the longitudi-
nal and shear wave velocities. Poisson’s ratio remains
practically constant in the whole temperature range of
measurements. This implies that, as the temperature
is decreased from room temperature down to 130 K,
there is no change in restoring forces associated with
the shearing of the lattice. No previous measurements
have been reported for the temperature dependences of
the longitudinal, shear and bulk moduli, Debye temper-
ature and Poisson’s ratio for α-Mo2C.

5. Hydrostatic-pressure dependences of the
ultrasonic wave velocity and elastic
stiffness moduli

After the ultrasonic measurements as a function of tem-
perature had been completed, the sample was placed
in the pressure cell in order to measure the effects of
hydrostatic pressure on ultrasonic wave velocity. The
data for the pressure dependence of the velocities of
both longitudinal and shear ultrasonic waves propa-
gated in ceramic α-Mo2C are reproducible under pres-

sure cycling and show no measurable hysteresis effects
(Fig. 4). This observation indicates that the α-Mo2C
ceramic does not alter in morphology under pressure
cycling up to 0.2 GPa and that there is no relaxation
of any residual stress. The longitudinal wave veloc-
ity is much more pressure dependent than the shear
wave velocity. The velocities of both the longitudinal
and shear ultrasonic waves increase approximately lin-
early with pressure. This is normal behaviour: both the
long-wavelength longitudinal and shear acoustic modes
stiffen under pressure. No indication of mode softening
in the measured pressure range was found. The scatter in
the shear mode data is negligible when compared with
that in the longitudinal mode results (Fig. 4); hence it
would seem that the scatter in the longitudinal wave ve-
locity is a consequence of a volume effect. The source
of the scatter in the longitudinal wave velocity could be
because the local environments containing pores (and
other microstructural defects such as slip lines, veining
structure and dislocations [7, 19]) would be affected
differently, when increasing pressure is applied to the
ceramic sample.

The hydrostatic-pressure derivative (∂ M/∂ P)P=0
of elastic stiffness (M) has been obtained from the
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Figure 4 Hydrostatic-pressure dependence of the change in natural
velocity for the longitudinal and shear modes, measured at room temper-
ature for ceramic α-Mo2C. The filled symbols correspond to measure-
ments made with increasing pressure and the open symbols to data as the
pressure was decreased (different symbols refer to different experimen-
tal runs). The straight lines are the least-squares fits to the experimental
data.

ultrasonic velocity measurements under pressure by us-
ing [43]

(
∂ M

∂ P

)
P=0

= (M)P=0

[
2(∂ f/∂ P)

f
+ 1

3BT

]
P=0

, (4)

where BT is the isothermal bulk modulus, f is the pulse-
echo overlap frequency at atmospheric pressure and
∂ f/∂ P is its pressure derivative. The adiabatic bulk
modulus BS has been used rather than BT through-
out the calculations: a procedure, which introduces
only a negligible error. The hydrostatic-pressure deriva-
tives (∂CL/∂ P)P=0, (∂µ/∂ P)P=0 and (∂ BS/∂ P)P=0
determined for ceramic α-Mo2C have positive values
(Table I). Both the longitudinal and shear elastic stiff-
nesses and thus the slopes of the corresponding acous-
tic mode dispersion curves, at the long-wavelength
limit, increase with pressure. The value obtained for
the hydrostatic-pressure derivative (∂µ/∂ P)P=0 of the
shear stiffness for ceramic α-Mo2C is typical for a
stiff solid and similar to those found [44] for ceramic
TiC and TaC whose pore fractions are smaller than
the α-Mo2C ceramic used in this work. This indicates
that the value obtained for (∂µ/∂ P)P=0 of ceramic α-
Mo2C is not greatly influenced by the highly porous
nature of the sample. However, the values determined
for the hydrostatic-pressure derivatives (∂CL/∂ P)P=0
and (∂ BS/∂ P)P=0 of ceramic α-Mo2C are very large
when compared to those found [44] for the TiC and TaC
ceramics.

It is known that the porous microstructure of ceramics
affects the hydrostatic-pressure induced changes in ul-
trasonic wave velocities and hence the pressure deriva-
tive (∂ BS/∂ P)P=0 of the bulk modulus (see for instance
[35]). In the absence of experimental data for the effects
of pressure on the elastic stiffness tensor components
of single-crystal α-Mo2C, it is not possible at present
to separate the intrinsic from defect contributions to

(∂ BS/∂ P)P=0 for ceramic α-Mo2C. However, it is in-
structive to compare the value determined in this study
for (∂ BS/∂ P)P=0 of ceramic α-Mo2C with those ob-
tained by other researchers using other methods. Haines
et al. [10] performed X-ray powder diffraction mea-
surements on α-Mo2C under quasi-hydrostatic pressure
conditions up to 46 GPa at room temperature and anal-
ysed the data on the pressure dependence of the unit cell
volume in terms of the Birch-Murnaghan equation of
state. They determined a value of 6.5 for the pressure
derivative (∂ BT/∂ P) of the isothermal bulk modulus
of α-Mo2C. This value and that (=4.34) obtained from
ab-initio calculations [10] are much smaller than that
(Table I) determined here for the hydrostatic-pressure
derivative (∂ BS/∂ P)P=0 of the adiabatic bulk mod-
ulus of ceramic α-Mo2C. This comparison indicates
that specimen porosity and the defect microstructure of
α-Mo2C [7, 19] have substantial influence on the de-
termination of the effects of hydrostatic pressure on the
volume-dependent elastic stiffness (CL) and adiabatic
bulk modulus (BS) of its ceramic form. However, it
should also be noted that, at the high pressures (>2 GPa)
involved in the diamond anvil cell experiments the unit
cell volume is substantially reduced. The isothermal
bulk modulus (BT) reported by Haines et al. [10] cor-
responds to the enhanced value for a material under high
compression, which enhances the bulk modulus and in
addition causes ∂ BT/∂ P to be a pressure-dependent
quantity, decreasing with increasing pressure [45].

The bulk modulus and its hydrostatic pressure deriva-
tive (Table I) have been used to calculate the volume
compression V (P)/V0 of ceramic α-Mo2C up to very
high pressures, using an extrapolation method based
on the Murnaghan’s equation of state [46] in the loga-
rithmic form. The calculations have been performed at
room temperature and results are shown in Fig. 5. The
volume compression of ceramic α-Mo2C is in reason-
able agreement with that obtained from high pressure
X-ray powder diffraction experiments [10].

Figure 5 Volume compression of ceramic α-Mo2C (full line) at room
temperature extrapolated to very high pressures, using Murnaghan’s
equation of state [46], in comparison with the very high pressure
X-ray powder diffraction data for α-Mo2C (full diamonds and dotted
line) taken from [10].
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6. Conclusions
The velocities of longitudinal and shear 10 MHz ul-
trasonic waves, propagated in a hot-pressed α-Mo2C
ceramic, have been measured as functions of tem-
perature and hydrostatic pressure. The α-Mo2C ce-
ramic is a comparatively stiff material elastically: the
longitudinal elastic stiffness and the adiabatic bulk
modulus of this ceramic are large. The bulk mod-
ulus is in accord with the strong interatomic bond-
ing in this material. The shear elastic stiffness and
Young’s modulus show normal behaviour with tem-
perature and can be fitted to the conventional model
for lattice vibrational anharmonicity. The longitudinal
elastic stiffness and bulk modulus increase with de-
creasing temperature and show a knee at about 200 K,
below which longitudinal acoustic-mode softening oc-
curs. The hydrostatic-pressure derivative of the shear
stiffness has a small value typical for transition metal
carbides, while the hydrostatic-pressure derivatives of
the longitudinal elastic stiffness and bulk modulus
have large positive values, possibly due to the defect
microstructure of the ceramic.
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10. J . H A I N E S , J . M. L É G E R, C . C H A T E A U and J . E .

L O W T H E R , J. Phys.: Condens. Matter 13 (2001) 2447.
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